# Mathematics Class X Chapter -4 Quadratic Equations Module 3/3 

Smt Indumathi K
TGT ( Maths/Phy)
AECS,Kaiga.

Learning outcomes in module $3 / 3$ are:

- Deriving Quadratic Formula.
- Solving quadratic equation by using Quadratic Formula.
- Understanding the Nature of the Roots.


## Deriving Quadratic Formula.

Consider the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$.
Dividing throughout by a, we get $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
This is same as $\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}=0$
i.e, $\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}=0$

So.the roots of the given equation are the same as those of

$$
\begin{equation*}
\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}=0 \text { i.e., }\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} . \tag{i}
\end{equation*}
$$

If $b^{2}-4 a c \geq 0$, then by taking the square roots in (i), we get

$$
x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Therefore $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
So, the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \& \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$, if $b^{2}-$ $4 a c \geq 0$.
If $b^{2}-4 a c \leq 0$, the equation will have no real roots.
Thus, if $b^{2}-4 a c \geq 0$, then the roots of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}$
$+c=0$ are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

This formula for finding the roots of a quadratic equation is known as the Quadratic Formula.

Note: This formula was first given by an ancient Indian mathematician Sridharacharya around 1025 A.D. Therefore ,it is called as Sridharcharya's formula for finding roots of the quadratic equation $a x^{2}+b x+c=0$.

## Example for illustrating the use of the quadratic formula.

## Solve: $16 x^{2}-24 x-1=0$

Solution: Compare the given equation with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.
$\therefore \mathrm{a}=16, \mathrm{~b}=24$ \& $\mathrm{c}=-1$

Since $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-24) \pm \sqrt{(-24)^{2}-4(16)(-1)}}{2(16)}=\frac{24 \pm \sqrt{576+64}}{32}=\frac{24 \pm \sqrt{640}}{32}$
$=\frac{24 \pm 8 \sqrt{10}}{32}=\frac{3 \pm \sqrt{10}}{4}$
Thus roots are $\frac{3 \pm \sqrt{10}}{4}$ i.e. $\frac{3+\sqrt{10}}{4}, \frac{3-\sqrt{10}}{4}$.

## Nature of Roots

The roots of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0=\frac{-b \pm \sqrt{D}}{2 a}$
Where $\mathrm{D}=b^{2}-4 a c$ is called discriminant. The nature of roots depends upon the value of discriminant D.There are three cases-

Case-I
When $\mathrm{D}>0$ i.e. $b^{2}-4 a c>0$, then the quadratic equation has two distinct roots. i.e, $\mathrm{x}=\frac{-b+\sqrt{D}}{2 a} \& \frac{-b-\sqrt{D}}{2 a}$

Case-II
When $\mathrm{D}=0$, then the quadratic equation has two equal real roots.
i.e. $\mathrm{X}=\frac{-b}{2 a} \& \frac{-b}{2 a}$

Case-III
When $\mathrm{D}<0$ then there is no real roots exist.

## What is the nature of quadratic equation $4 \mathrm{x}^{2}-12 \mathrm{x}-9=0$.

$$
\begin{aligned}
& \text { Solitionil Here, } D=h^{2}-4 a c=(\cdot 12)^{2}-(\cdot 4)(9)=144+144=288>0 \\
& \Rightarrow \text { Roots ane real \& differenent. }
\end{aligned}
$$

## Find the value of m so that the quadratic

 equation $m x(x-7)+49=0$ has two equal roots.Solution: The given equation is: $\mathrm{mx}^{2}-7 \mathrm{mx}+49=0$
For equal roots $(-7 \mathrm{~m})^{2}-4 \mathrm{~m}(49)=0$
$49 m^{2}-4(49) m=0$
$49 \mathrm{~m}(\mathrm{~m}-4)=0$
$m(m-4)=0$
$\mathrm{m}=0, \mathrm{~m}=4$
But $\mathrm{m}=0$ does not satisfy the given equation
Therefore $\mathrm{m}=4$.

## Is the following situation possible?

The sum of the ages of a mother \& her daughter is 20 years . Four years ago, the product of their ages in years was 48.
Solution: Let mother's present age be x years \& daughter's present age be (20-x) years.
Four years ago, Mother's age $=(x-4)$ years $\&$ daughter's age $=(16-x)$ years
Given, $(x-40(16-x)=48$
$x^{2}-20 x+112=0$,
After calculation $\mathrm{D}=-48<0$
Therefore no real roots exists .
So the given situation is not possible

Two pipes running together can fill a tank in 6 minutes. If one pipe takes 5 minutes more than the other to fill the tank, find the time in which each pipe would fill the tank separately.
Solution: Suppose the faster pipe takes x minutes to fill at tank
$\therefore$ portion of the tank filled by the faster pipe in one minute $=1 / \mathrm{x}$
So, portion of the tank filled by the faster pipe in 6 minutes $=$ 6/X
Similarly , portion of the tank filled by the slower pipe in 6 minutes $=6 /(x+5)$
ATQ, $6 / x+6 /(x+5)=1$,so, $x^{2}-7 x-30=0$
After solving we get $\mathrm{x}=10$ or -3 . But $\mathrm{x}>0 \therefore \mathrm{x}=10$
Hence faster pipe fills the tank in 10 minutes \& slower pipe takes $10+5=15$ minutes to fill the tank separately.

THANK YOU

